Technical foundation for Covenant's sovereign AI infrastructure

Conduit

AI Infrastructure Framework

Open-source framework for tuning, deploying, and building applications with open-source models. Compute-provider agnostic. Type-safe by default.


Overview

Conduit abstracts AI infrastructure into composable, type-safe building blocks. Define your models, schemas, and compute requirements in Python. Conduit handles provisioning, deployment, health management, and orchestration.

from conduit import ModelConfig, ComputeProvider

from conduit.runtime import LMLiteBlock

block = LMLiteBlock(

models=[

ModelConfig(

"Qwen/Qwen3-4B",

max_model_len=1400,

max_model_concurrency=50,

model_batch_execute_timeout_ms=1000,

)

],

compute_provider=ComputeProvider.RUNPOD,

gpu=GPUS.NVIDIA_L4,

replicas=2,

)


Architecture

Runtime Blocks

Conduit uses a block-based architecture for composable AI pipelines:

BlockFunction
LMLiteBlockInference runtime with streaming + batching
HttpGetBlockHTTP request handling
FileSystemWriteBlockFile system operations
Sqlite3BlockDatabase operations

Blocks are chainable. Each conforms to Conduit's communication spec.

Resource Management

Conduit automatically calculates infrastructure requirements:

Developer defines: models, replicas, constraints

Conduit calculates: VRAM requirements, GPU selection, cost

Conduit validates: resource compatibility, fit constraints

Conduit provisions: infrastructure on target provider

Add as many models as needed—Conduit throws an error if resources don't fit.

State Management

  • Deployment state: What's running, where, with what configuration
  • Health monitoring: Automatic failure detection
  • Garbage collection: LMLiteBlock.gc() cleans stale instances after config updates
  • Readiness gates: .ready flag prevents traffic to unready nodes

Key Innovations

LM Lite Runtime

Full specification →

Multi-model batching engine integrated into Conduit.

Capabilities:

  • Efficient batch processing with configurable timeouts
  • Round-robin load balancing across replicas
  • Health-check readiness gates
  • GPU-aware execution routing
  • Multi-model deployments on single GPUs

Configuration:

ModelConfig(

model_id, # HuggingFace model ID

max_model_len=1400, # Max tokens per request

max_model_concurrency=50, # Max concurrent requests per batch

model_batch_execute_timeout_ms=1000, # Batch timeout

)

Model Data Language (MDL)

Full specification →

Type-safe LLM communication integrated into Conduit.

Capabilities:

  • Python dataclass schemas for input/output
  • Automatic compilation to model-safe type hints
  • Payload validation on request and response
  • Guaranteed structured outputs

Usage:

from dataclasses import dataclass

from typing import List

@dataclass

class Input:

name: str

context: str

@dataclass

class Output:

response: str

confidence: float

tags: List[str]

result = block(

model_id="Qwen/Qwen3-4B",

input=Input(name="query", context="..."),

output=Output,

)

# result is guaranteed valid Output instance


Compute Abstraction

Conduit treats all compute providers as interchangeable container endpoints.

compute_provider=ComputeProvider.RUNPOD # or AWS, GCP, LOCAL, etc.

Provider agnostic design:

  • Same code runs on any supported provider
  • Switch providers by changing config, not application code
  • Mix providers in the same pipeline

Optimized for Covenant Secure Compute Cloud (2026):

  • Native MEP integration for encrypted inference
  • End-to-end sovereignty guarantees
  • Cryptographic attestation of execution

Lifecycle Management

Initialization

block = LMLiteBlock(models=[...], compute_provider=..., replicas=2)

Garbage Collection

LMLiteBlock.gc() # Clean stale instances after config changes

Readiness Check

while not block.ready:

time.sleep(5)

# Safe to send traffic

Cleanup

block.delete() # Destroy runtime and backing resources

API Compatibility

Conduit supports OpenAI-style message format:

result = block(

model_id="Qwen/Qwen3-4B",

messages=[{\"role\": \"user\", \"content\": \"Hello\"}],

system_message="You are a helpful assistant",

)

Or typed MDL format:

result = block(

model_id="Qwen/Qwen3-4B",

input=TypedInput(...),

output=TypedOutput,

)


Installation

Requirements: Python 3.12.6+

pip install "git+https://github.com/Covenant-Labs-AI/conduit.git@main"

Roadmap

  • [ ]vLLM runtime support (VllmBlock)
  • [ ]Local compute provider for on-device execution
  • [ ]AWS (EKS / ECS / EC2)
  • [ ]GCP (GKE / Vertex / Compute Engine)
  • [ ]Azure (AKS / Azure ML)
  • [ ]Lambda Labs, Modal, CoreWeave
  • [ ]Covenant Secure Compute Cloud integration

→ GitHub→ LM Lite Specification→ MDL Specification